Jumat, 03 Juli 2009

Transistor Grafin : Untuk Prosesor Super Cepat

Transistor Grafin : Untuk Prosesor Super Cepat

Tahukah berapa kecepatan prosesor komputermu saat ini? Kecepatan prosesor notebook atau netbookmu saat ini? Tahukah berapa kecepatan prosesor komputer tercepat saat ini? Ternyata semua masih dalam angka Mega Hertz (MHz) atau Giga Hertz (GHz).

Pernahkah membayangkan bagaimana rasanya menggunakan komputer super cepat dengan kecepatan prosessor 40 Terra Hertz (40.000 GHz)?

Inilah yang sedang didesain oleh seorang profesor teknik fisika bernama Walter de Heer. Pada tahun 2008 lalu dia menemukan sebuah bahan untuk membuat semikonduktor guna dipakai dalam perangkat eletronik termasuk prosesor komputer. Bahan tersebut adalah grafin, suatu bentuk baru dari karbon. Selama ini bahan semikonduktor yang digunakan dalam sirkuit elektronik berasal dari silikon. Material yang banyak kita temui dalam isi pensil.

Sebelumnya telah dibuat model-model karbon yang diperkirakan bisa menjadi bahan semikonduktor yang lebih baih dari silikon. Dan ternyata menurut model tersebut grafin salah satu yang paling cocok.. Satu lapis karbon dengan ketebalan 1 atom dapat dibuat menjadi transistor dengan kecepatan ratusan kali lebih cepat daripada transistor silikon saat ini. Bersama dengan laboratorium Lincoln MIT, Walter membuat ratusan transistor grafin pada sepotong chip. Hasilnya makin menguatkan bahwa grafin bisa menjadi bahan transistor generasi masa depan.

Dia menambahkan, komputer berbasis transistor silikon saat ini hanya bisa menjalankan sejumlhha operasi saja per detiknya tanpa over heating. Namun dengan grafin, elektron bisa bergerak lebih cepat hampir-hampir tanpa hambatan sehingga panas yang diihasilkan juga kecil. Terlebih lagi,, bahan grafin sendiri adalah bahan konduktor panas sehingga panas yang dihasilkan bisa segera dihilangkan dengan cepat. Oleh karenanya elektronik berbasis grafin akan bekerja dengan jauh lebih cepat.

Terakhir diperbaharui ( Tuesday, 10 February 2009 )
Baca Lebih Lengkap...
Teknik Terbang Burung Walet
Ditulis Oleh Admin
Wednesday, 04 February 2009

Teknik Terbang Burung Walet

Pernahkah anda melihat tornado atau pusaran angin puting-beliung? Semua benda yang berada di sekeliling tornado akan dibawa terbang masuk ke dalam pusarannya, seperti dihisap ke arah sumbu tornado. Mengapa begitu? Karena tekanan udara di dalam tornado lebih kecil dari tekanan udara di sekitarnya. Perbedaan tekanan udara yang ditimbulkan cukup besar untuk menarik benda-benda seperti drum minyak, atap rumah, dan bahkan seekor kerbau ke dalam pusaran tornado. Lalu, apa hubungannya dengan burung walet? Apakah burung walet mampu terbang menembus pusaran tornado? Begini ceritanya.

Ada jenis pesawat jet tempur yang dilengkapi dengan sepasang sayap yang dapat dilipat ke belakang dan dikembangkan lagi. Jenis sayap seperti ini disebut swept-wing, dan sayap jenis inilah yang memberikan kemampuan terbang cepat dan membelok tajam bagi pesawat jet tempur – seperti kemampuan seekor burung walet. Lucunya, para insinyur penerbangan sudah memanfaatkan keunikan burung ini, jauh sebelum para ilmuan memahami dan menjelaskannya. Bukan saja peswat jet tempur Amerika, F-14 Tomcat yang menggunakan teknik burung walet ini, tetapi pesawat jet penumpang jenis Concorde juga.

Kedua jenis pesawat terbang di atas membutuhkan kecepatan tinggi ketika terbang, tetapi juga kemampuan untuk memperlambat kecepatannya ketika hendak mendarat, tanpa kehilangan ketinggian, atau lebih baik dikatakan tanpa kehilangan kemampuan untuk mempertahankan ketinggian yang tepat, sebab mengurangi kecepatan berarti mengurangi daya dorong ke atas dari udara. Pernahkah anda memperhatikan seekor burung ketika hendak mendarat atau hinggap di cabang pohon? Itu juga adalah salah satu dari rahasia burung walet yang akan diungkap di sini.

Terakhir diperbaharui ( Wednesday, 04 February 2009 )
Baca Lebih Lengkap...

Ada Apa Dibalik Rumus Fisika?

Sebagian orang menganggap fisika susah karena terlalu banyaknya rumus yang digunakan. ”Ngapalin rumusnya aja susah, udah gitu bingung mau makenya gimana”, begitu komentar para siswa tentang fisika. Sebenarnya, rumus tidak perlu dihafal tetapi dipahami. Terdengar klise memang, tapi begitulah kenyataannya.

Rumus atau persamaan di fisika, pada umumnya dipakai sebagai pernyataan ringkas suatu konsep. Suatu teori atau konsep yang bisa memakan penjelasan berlembar-lembar kertas, dapat dinyatakan dengan tepat hanya dalam satu baris persamaan. Hal ini merupakan salah satu sebab utama mengapa di fisika banyak sekali rumus.

Namun, hal yang banyak terjadi dalam pendidikan kita adalah kebanyakan siswa hanya melihat rumus itu secara sepotong-sepotong. Mereka tidak (mau) mengetahui cerita atau konsep di balik rumus tersebut. Hal ini mengakibatkan daya analisis siswa lemah, sehingg mereka hanya bisa menyelesaikan soal yang langsung dan mudah yaitu yang hanya menggunakan satu rumus. Kalau terdapat soal yang menggunakan konsep yang bermacam-macam –yang berarti juga memakai rumus lebih dari satu- mereka kebingungan menyelesaikannya.

Berikut beberapa contoh tentang kebingungan para siswa terhadap rumus dalam fisika:

1) Rumus untuk koefisien gesek statik sering dinyatakan dengan:

μ = tan θ ..........(1)

Rumus ini sering dipahami siswa bahwa koefisien gesek statik (μ) tergantung pada besarnya sudut kemiringan bidang (θ). Padahal pemahaman ini sama sekali salah. Koefisien gesek statik hanya tergantung pada jenis bahan-bahan yang bergesekan. Atau dalam bahasa fisika, koefisien gesek statik merupakan karakteristik dua bahan yang bergesekan (misalnya, antara kayu dengan kayu, dll).

Rumus (1) merupakan rumus yang digunakan sebagai cara untuk mengukur koefisien gesek. Apabila kita punya sebuah benda, misalnya buku, lalu kita ingin mengetahui berapa koefisien gesek statik antara buku dengan permukaan dari kayu, maka cara mengetahuinya adalah dengan meletakkan buku tersebut di atas permukaan kayu. Kemudian permukaan kayu itu kita miringkan (terhadap horizontal) sedikit demi sedikit. Pada saat awal (sudut kemiringan kecil), buku tidak akan bergerak, tetapi setelah terus dimiringkan, pada sudut kemiringan tertentu (θ) buku akan mulai mulai bergerak, nah tan θ inilah yang merupakan nilai μ.

Terlihat bahwa nilai sudut θ adalah spesial, tidak bisa divariasikan sembarangan, hanya terdapat satu nilai θ untuk koefisien gesek statik antara bahan kertas dan kayu. Hal ini mengakibatkan bahwa rumus (1) tidak bisa dipahami sebagai hubungan ketergantungan antara μs terhadap θ. Rumus itu memberitahu kita bagaimana cara mengukur μ.

2) Contoh lainnya adalah rumus untuk koefisien muai panjang α:

α = ΔL/(ΔT.Lo) ........(2)

Dalam rumus di atas, apakah α bergantung pada perubahan panjang benda ΔL, perubahan temperatur ΔT, atau panjang awal Lo? Jawabannya: α tidak tergantung kepada ketiga besaran di atas. Lagi-lagi, koefisien muai panjang α merupakan karakteristik dari suatu bahan (logam). Pers. (2) merupakan persamaan yang mendefinisikan koefisien muai panjang. Jadi, arti dari pers. (2) adalah koefisien muai panjang didefinisikan sebagai fraksi perubahan panjang per satuan temperatur.

3) Lain lagi dengan persamaan gerak jatuh bebas di bawah ini,

h = -(gt^2) / 2 .............(3)

yang memang menyatakan ketergantungan ketinggian h terhadap waktu t. Pers. (3) adalah persamaan fungsi h terhadap t^2.


Para siswa sering tidak mengetahui ”cerita” di balik rumus. Sehingga pemahaman mereka sering salah, bahwa setiap rumus hanya dipahami sebagai hubungan ketergantungan antar variabel. Dari contoh di atas, kita dapat tahu bahwa rumus dapat menyatakan:
a) bagaimana cara mengukur sesuatu
b) definisi suatu kuantitas
c) fungsi (ketergantungan) suatu variabel terhadap variabel lainnya.

Untuk memahami suatu rumus kita harus memahami cerita di balik rumus tsb.

Pusat Penelitian Fisika -

Pusat Penelitian Fisika -

Selamat datang di situs Pusat Penelitian Fisika ! Pusat Penelitian Fisika adalah nama baru dari Pusat Penelitian dan Pengembangan Fisika Terapan (P3FT) yang sebelumnya merupakan perubahan dari Lembaga Fisika Nasional (LFN) berdasarkan Keputusan Presiden RI No. 1 tanggal 13 Januari 1986. Lembaga ini merupakan salah satu Pusat Penelitian dibawah naungan Deputi Ilmu Pengetahuan dan Teknologi, Lembaga Ilmu Pengetahuan Indonesia (LIPI). Tujuan dan lingkup Puslit Fisika diarahkan pada usaha untuk mendukung pembangunan nasional melalui riset pengembangan sumber daya alam, terutama yang terkait dengan ilmu fisika, menuju Indonesia sebagai negara industri.

Pusat Penelitian Fisika menerima dan terbuka untuk publik yang berkeinginan melakukan kerjasama riset dalam berbagai bentuk, seperti kerjasama antar institusi, Tugas Akhir / Tesis / Disertasi mahasiswa, dll. Silahkan mencari personil yang sesuai dan melakukan kontak langsung melalui halaman informasi setiap personil yang ada.

» Visi, misi, tupoksi dan wewenang